SG-3071 Isolated Voltage Input/Output Module User's Manual

Introduction

The SG-3071 is a voltage input to voltage or current output signal conditioning module. It has 3000Vdc three-way isolation for input, output and power. And can change the input/output range via internal configuration switches.

The SG-3071 has an LED display to show whether the SG-3071 is functioning correctly and has two VRs (Zero, Span) to calibrate the input/output range accuracy.

The bandwidth of the SG-3071 is typically 3KHz. It's easy to mount the SG-3071 on a standard DIN rail and can operate in environments with wide temperature range.

Specifications

Voltage input:

- Bipolar: ±5V, ±10V
- Unipolar: 0~5V, 0~10V
- Input impedance: 2MΩ
- Input bandwidth: 3KHz (typical)@-3dB

Voltage output:

- Bipolar: ±5V, ±10V
- Drive: 10mA (max.)
- Output impedance: <50Ω

Current Output:

- Current: 0 ~ 20mA, 4 ~ 20mA
- Current load resistor: 0~500 Ω (Source)

General

- Three-way isolation: 1000 Vdc
- Accuracy: ±0.1% of full range (typical)
- Operation temperature range:-25°C~75°C
- Storage temperature range:-30°C~85°C
- Operation bandwidth: 3KHz
- Weight: 94 gram

Supply Voltage

- Input Range: 10~30Vdc@24Vdc (Typical)
- Consumption: 1.80W (voltage output)
 - 2.30W (current output)

KOLBINGER - PCQT - +43 2239 3160

AT-2384 Breitenfurt/Vienna, Hauptstrasse 93, office@kolbinger.at , www.pcqt.at

Configuration

The terminal wiring for the SG-3071 is shown in Figure A. Positive power terminals pins 7 and 9 are internally connected, as are negative pins 10 and 12. Power can be connected through the adjacent modules, making wiring much easier. The SG-3071 uses a power input range of 10~30Vdc.

Table 1 shows the switch positions used to configure the input and output range. The I/O configuration switches are located inside the module. And can be accessed by removing the DIN-rail bracket covers by sliding them in the direction shown in Figure B.

SG3071 Input To Output Range	Range (SW1)					Range (SW2)				
	1	2	3	4	5	1	2	3	4	5
±10V/±10V		•	•				•			
±10V/±5V		•	•			•				
±5V/±5V		•	٠				٠			
±5V/±10V		٠	٠					٠		
0~10V/4~20mA	٠			•	٠		٠		٠	
0~10V ⁄ 0~20mA				٠	٠	٠				٠
0~5V/4~20mA	•			•	•			•	•	
0~5V∕0~20mA				•	•		•			٠
♦ : ON										
Table 1: Input to output range (SW1 \ 2)										

* Factory default setting

Calibration Procedure

Figure D: Gain Regulate

- 1. Refer to figure C to adjust the offset value.
 - (1) Connect pin7 to the +24Vdc connection and pin 10 to GND.
 - (2) Connect pin8 and pin 11 to the meter.
 - (3) Use wire to connect pins 1 and 2.
 - (4) Changing the SW1 and SW2 depends on your input/output range. Watch the value of the meter and adjust the VR1 (ZERO) value to the minimum value of this range.

- 2. Refer to figure D to adjust the gain value.
 - (1) Connect pin7 to the +24Vdc connection and pin 10 to GND.
 - (2) Connect pin8 and pin 11 to the meter.
 - (3) Connect pins 1 and 2 to input source.
 - (4) Changing the SW1 and SW2 depends on your Input/Output range. Watch the value of the meter and adjust the VR2 (SPAN) value to the maximum value of this range.

Block Diagram

Dimensions

